I’ll Name That Tune In One

CD details from the web – by Chris Bell

It seems that for as long as I've been writing software, I've been trying to write an application to catalogue my CD collection. I'm never likely to finish it, because every time a bit of cool new technology appears, I try to put it to some kind of use. But it does mean I've learnt a little about these technologies, or more specifically, getting hold of the details of CDs from the internet. This article will show several different ways to do this, in Delphi and Delphi for .NET.

A Brief History

Many years ago someone somewhere came up with the great idea of CDDB (you may realise at this point that my knowledge of the facts are a little shaky, so apologies for any inaccuracies and please don't sue me). CDDB was a large internet database containing information about thousands of CDs. Initially anybody could write a client to connect to this database, for nothing. Invented before the days of XML and web services, CDDB used its own text based protocol over HTTP. There were a couple of clever things about CDDB. First off, the algorithm used to generate the ID for a CD seems to work very well, so you don't get too many multiple matches for CDs. Secondly, users can enter details for missing CDs, so the database gets bigger and better the more people use it.

At some point CDDB became Gracenote and made the decision that they needed to make some money. The way to do this was to start charging developers to use their new CDDB2 technology, whilst phasing out the original version of CDDB.

Somebody decided this was a bad thing and set up FreeDB (http://www.freedb.org), which provides a CDDB service for free. I'll show how to use this service in this article.

But it seems Gracenote have realised their mistake and CDDB2 is now free to use in non-commercial applications, so I will also cover this later in this article.

FreeDB Using Delphi

The Delphi implementation of accessing FreeDB consists of several classes. The first of these classes is TCDInfo. This uses MCI to interact with the installed CD player. This pulls out the required information to generate the CD identification number. Once we have this we have enough information to query FreeDB. The TCDDBConnect class is responsible for this. It uses the Indy HTTP component to do this. The only complication here is to remember to use POST since the data passed may be quite large.

Finally we have a TCDDatabase class to map between our objects and an Access database

FreeDB Using Delphi for .NET

Converting to Delphi for .NET (using the preview compiler) was actually reasonably straightforward. The first problem was the MCI calls used, since these were not in the preview source. Another problem is that some of these functions use raw pointers. This can be worked around by importing the functions several times, specifying the pointer parameters using typesafe equivalents, as below

Importing API functions safely into .NET

interface

function mciSendCommandOpen(mciId: MCIDEVICEID; uMessage: LongWord;

 dwParam1 : LongWord; var OpenParams : MCI_OPEN_PARMS): MCIERROR;

function mciSendCommandSet(mciId: MCIDEVICEID; uMessage: LongWord;

 dwParam1 : LongWord; var SetParams : MCI_SET_PARMS): MCIERROR;

implementation

[DllImport('winmm.dll', CharSet = CharSet.Ansi, SetLastError = True, EntryPoint = 'mciSendCommandA')]

function mciSendCommandOpen; external;

[DllImport('winmm.dll', CharSet = CharSet.Ansi, SetLastError = True, EntryPoint = 'mciSendCommandA')]

function mciSendCommandSet; external;

The Indy components aren't yet available in Delphi for .NET but the .NET Framework comes with its own HTTP component, so I used this instead. One other slight problem is the use of the method name Create, which the Delphi for .NET compiler thinks is the name of a constructor. I got around this with a workaround so I didn't need to call Create.

The most pleasing part of this port was the database. The Delphi ADO components aren't yet available so, rather than use the ADO.NET components, I chose to use .NET's built-in support for reflection. With the code shown below, it is a simple process to stream an object to and from an XML file. Using this technique, an XSL transform can be used to generate a HTML report of my CD collection.

Serializing objects to XML

interface

type

 TCDDatabase = class

 private

 FCDList : ArrayList;

 public

 procedure LoadFromXML;

 procedure SaveToXML;

 end;

implementation

procedure TCDDatabase.LoadFromXML;

var

 S: FileStream;

 SF: SoapFormatter;

 LFileInfo : FileInfo;

begin

 LFileInfo := FileInfo.Create(CDBFile);

 if LFileInfo.Exists then

 begin

 S := FileStream.Create(CDBFile, FileMode.Open);

 try

 SF := SoapFormatter.Create;

 FCDList := SF.Deserialize(S) as ArrayList;

 finally

 S.Close;

 end;

 end;

end;

procedure TCDDatabase.SaveToXML;

var

 S: FileStream;

 SF: SoapFormatter;

begin

 S := FileStream.Create(CDBFile, FileMode.Create);

 try

 SF := SoapFormatter.Create;

 SF.Serialize(S, FCDList);

 finally

 S.Close;

 end;

end;

This conversion highlighted to me a couple of issues with the current Delphi for .NET preview.

First is namespaces. In C#, namespaces allow a developer to group related classes, but each class can exist in its own source file. Currently Delphi for .NET's implementation of namespaces simply means a developer can use periods in their unit names, meaning all classes in one namespace must be implemented in the same source file. I'm sure Borland are aware of this and hope they address it for the final release.

The second issue is with the VCL for .NET. It isn't currently possible to mix and match VCL and WinForms controls on the same form, although it is possible for a project to contain VCL and WinForms forms. I also can't imagine any 3rd party control developers will be producing VCL for .NET, since pure .NET components will have a much bigger potential market. For these reasons, I can only see the VCL for .NET being used as a stepping stone to full WinForms applications.

CDDB2

With CDDB2, Gracenote have simplified the process of querying their database by providing a set of ActiveX controls. I won't go into further detail, since these are straightforward to use.
Windows Media Player

The Media Player ActiveX control exposes a powerful object model, and it's possible to use this to get hold of CD track information. MS has its own online database and as far as I'm aware doesn't provide any means to access this, except through Media Player. Here is a rough and ready way of pulling this information out of Media Player. You’ll need to import the Media Player ActiveX to use this code

Using Windows Media Player to extract CD information

procedure TForm1.ShowTracksBtnClick(Sender: TObject);

var

 Loop : integer;

 LThePlayList : IWMPPlaylist;

begin

 LThePlayList := WindowsMediaPlayer1.cdromCollection.Item(0).Playlist;

 for Loop := 0 to LThePlayList.count-1 do

 begin

 ShowMessage(LThePlayList.Item[Loop].name);

 end;

end;
Conclusion

In this article I've described several ways to get hold of the track information for CDs from the internet. Each approach has its advantages and disadvantages. Using FreeDB is the most flexible, since it can be used from any client that understands HTTP, but the the other approaches are probably easier in a Windows only environment. Most of the source code for this article can be downloaded from my website at http://www.doogal.co.uk
Chris Bell has been using Delphi for longer than he can remember. He also likes to play with C#, PHP and his 12 month old daughter. He can be contacted at doogal@doogal.co.uk

